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The general solution of the plane problem of the theory of elasticity for
a region bounded by two eccentric circles in a plane was given by Jeffer
[1] and Weinel [2 ] in bipolar coordinates. The loading was assumed to
be in the form of a trigonometric series. This solution cannot be applied
to a case of concentrated loading, since the trigonometric series become
divergent.

Sen Gupta [3 ] analyzed the deformation of an eccentric ring acted
upon by two diametrically opposite forces applied along the axis symmetry.
However, a general case of forces acting on such a ring was not considered,

Below are given expressions for the stress function and for the com-
ponents of stress resulting from the action of any concentrated force on
the outside periphery of an eccentric ring. It is assumed that the re-
actions for a given force are stresses acting along the ring’s boundaries.
These reaction stresses reduce to zero when several forces acting on the
ring are in equilibrium,

In the solution of this problem the bipolar coordinates a and 8 are
used, Their relation to the rectangular coordinates x and y is given by
the following expressions,*

z— Sinha _ sin
cosha +cosp ' ~ cosha + cosP
6]
Let us consider the state of stress in an eccentric ring defined by

coordinates a = a, and a = a,; the radii of these circles being respect-

* The information on bipolar coordinates, and on many problems solved in

terms of such coordinates, may be found in a book by Ufliand {4].
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ively equal to ry = cosech a, and r, = cosech a,; the eccentricity is
equal to e = |coth a, — coth a, | (Fig. 1).

A;y \f

-0

Fig, 1,

Let it be assumed that a force is applied at point K of the periphery
a=a, (the bipolar coordinates of point K are a,, 61' and the rectangular
coordinates are % and yl). The applied force has normal component R
and tangential component T and is reacted on by the following tangential
and normal stresses along both boundaries of the ring:

Tap = & ?51: (cosha + cosB) (Y cha + M sinha)

It

« i—é':? [X (cos® B+ 2 cosh acosB 4 1) — Y sinhasinB + M (cosh a + cos B) sin B}(2)

where X and Y are projections of the applied force on the x and y co-
ordinate axes respectively, and ¥ = Xy1 - Yx1 is the moment of the force
about the origin of coordinate axes. (The upper signs are given for the
stresses along the vuter periphery and lower signs for the stresses along
the inner periphery). Consequently the stresses are reduced to zero when

SA=ZY=3M=10.

Let the stress function be equal to the sum of two functions, both of
which are biharmonic and satisfy single-sign displacement conditions.

=0+ 3
The function ¢& has a singularity at point K(xl. yy) of the type
Y —1
A —xe—w+Y et I

which corresponds to the application of a force at point K on the ring's
periphery; the function is defined by the following formula
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gm:%{?%- — XsinB < ¥sinha - M (cosha -+ cos B)] + “.é (1 —vya[Xsinh a +
2n

+ YsinB] +|Tsinht — Rsin0 + (T'z, 4+ Ry;Xcosht — cos 8)] 2tan™ 1(@ L nan..;ﬁ)}m)
(g==cosha4cosB, t=a—as, 0=PB—B)

where v is Poisson’s ratio. In this and in the following formulas the
upper sign applied when a, < a,, i.e.,, when the force acts on the outer
periphery of the ring, and the lower sign applies when a, > a,, where the
force is applied to the inner periphery of the ring. The corresponding
stresses may be found by known formulas for the components of stress by
means of a stress function expressed in bipolar coordinates (see, for
instance, {4 ] p. 171), as follows:

1 : sinhtsin0 .
[Tagh = o {(cosha -4 cos B) [—- (T sin - R Sinh@mﬁ + X sin f -

3 M " ‘ (T R coihtcosﬁ—l
Ysinha (coshg 4 cos B) — (T'z; + Ryy) osm—cssﬁi

+ _.w.(Y cosha—%«MsinhaFF i 3]

1 . coshtcos0—1
log — 0, Iy = — (cogha 4 cos B) [(T 8in9 4 Rsinh t) m)r

inhfsin® 1 . {1 —v
- Ry, SiBDISIDO o 2 g M ha
(Tzy + Byp) —— o F -3 (X cosB + MsinB) 4 X cos ]

{ . coshay 4 cos By
=1 [ (Tsin® coshay + cos B, _ -
[og -+ 0l ﬂ{ (Tsin® + R sinh ) SOS0EF 8Pt 7:6in B, — Rsinha,

~— XsinhacosB + Ycoshasinp 4 v...i:.‘i (X coshacos B+ X —Ysinhasin B)] (5)

The function g&z must remove from the boundary of the ring all stresses

not included in equation (2), and may be chosen in the following form of
a series;:

gz = .2%»{./‘0! (cosh ¢ 4 cos B) 4+ Ccos B ,12.}1 [/, @) cosn -+ /.8 (@) sin nB]} (6)

Here

fo(@) = A,[cosh(n+ 1)}t ~cosh(n — ) t] + B, [(n —1)sinh (e + 1}t —{(n + 1) sinh
(n—1)1]
fi{a)= Ascosh2t+ Bysinh 2t (t=a —a;) (n=2) N

The constants in this function must be such ss to satisfy boundary

conditions, The stresses corresponding to the function é@ are determined
by the following formulas
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tagh = —21? (cosha- cos B) { JsinB + 2 (n/fS (@) sin nf — nf;' (@) cos nB]} 8

n=1

[og — gy = -—:—r—(cosha + cos B) {Js inh a + 2 [F;, (@) cos nB + FJ(a) sin nﬁl}

n=1
[og + aals =—,‘;{—o+§[ ®;,(a) cos n + @ (@) sin nB] |
n=1
Here
F,(@)=nA_[(n+ 1) cosh (a + 1)t — (n —1) cosh (n — 1) ] +
+n(n?—1) B, [sinh(n 4+ 1)t —sinh (2 —1)¢]  (n3>2)
Fi(a)= 2A4,cosh2t+ 2B;sinh2t 9)
O (@=[r+1)A4,,, +2 ncosha A, 4 (n—~1) A, lcoshnt 4 [—2sinh ¢, 4, +
+(n+1)(n+2) B, +2(r*—1)cosha,B, + (n —1)(n—2) B, ]sinh nt.  (n>>3)

@ (a) = [34; + 4cosha; As + A; [cogh2t +] —28inh a;A4; + 12 B3 4- 6¢cosha, B, + By|sinh2
Oy (@) = [2A2 4 2cosha;4; — 2sinha, B, [cosht + [—2sinha;A; 4 6B; + 2cosha,;B;]sinht

In order to determine the constants, the function g¢1 is also expressed
in the form of trigonometric series using expansion

-1/ ‘t__ _9__) — [___ 0 R (10)
tan :\coth 5 tan 5 + Z e sin nb

n=1

One obtains

_ 1 :
gp= o {G+ 0+

1—v

F a (Xsinha + Y sin 8) + [+ K (cosha; + cos B1) - Rsinha; F 3/, X]cos B +

+ (e%‘:zl 1)[— T cos 3: F 1/2 M]sin B + (72 — 1) [T sin By F 1/, X] cos B +

+2r Z sinht e¥™sinnd 4 2 2 jRrcos0 — {Tzy 4+ Ry)sin ”e]___ns:nht il)coshl :m}
n=2 n=2

where
G=F 81[—XsinB + Ysinha 4 M (cosha + cos B)] -+

4 {Rsin By — %/ M) sin B + Re*® sinh a JF Re*™ (cosha + cos B)
H = +1/,B [— XsinB 4 Y sinha + M (cosh a + cos B)]
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The terms in the expression for G do not affect stresses; thus they
need not be considered; the terms in the expression for H, when a = a,,
give stresses entering into (2); the stresses when aq = a,, which depend
on the remaining terms of series given by (10), must be taken care of by
means of function ¢,.

Having the above in mind, the coefficients of cos n3 and sin nf3 in the
suns g, + gep, and I(goy) /a + 3(g$,) /da when a = a,, may be equated to
zero, and thus coefficients An, Bn(" > 2) may be determined as follows:

—_ 2 H
AL = +S“‘_“A_.‘1 [Rn cos nf; +(Tz; + Ryy)sin n3y] + l%g_’be,l (n*sinh? 1, F
. n

n n

T nsinh £, cosh t; 4 e¥ ™ sinh nt;)

B.C 1

" = T A [Rn cos n3 + (Tzy + Ry,)sin nBy][n?sinh?¢, + nsinh¢ycosh ¢ +
n

+e ™sinhnt]F l%n_"&sinhz t
n
2
Al=7F sin_hA_‘g [Rn sin nPy — (Txz1 + Ry,) cos nf,) —

n

- I_E’:_"Ql [n2sinh?¢, F nsinh ¢, cosh ¢, f¢ F™isinha]

nl,

1 .
B, = m [Rnsin nBy 4 (Tx1 -+ Ryi) cos nBy] X

T cos npy
A

X [n? sinh? ty 4 nsinhtcosh ¢ 4- eF1h ginh nty] 4. sinh% 4 (11

n
A =sinh?nt; —n?sinh®y (b= a3— &)

The constants Al, Bl' C and J may he found by comparing the stresses
given by formulas (5) and (8), when a = a, and a = a,, with those given
by (2). Then
eF2h gin By

1 1 1

c__ = — Co
Af=4T Sinh2i, j:zX+ 2Jtanht;, B® = 2(X+J)
eF2hgin By 1—v

C=%FT 55 22, %

7= 1
tanh ¢, (Sinh® « +sinh? &)
F 1—-—[—‘_—\’X (sinh? g, —sinh? al)}

— R sinhay ?—;— X F Xsinh?q; — % J (tanh t; $sinh2g,)

[j: T tanh ¢, sin 83 F R (cosh a; + cos 1) %’X F

e 2 cog By 1

sinh 2¢;

. _ 1 1—v
By _—.7M:F—TY

A““——":FT

1 -
+ 5 M4 —5 Ytanhy (12)
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Thus, the stress function for the given problem is determined.

As an example, let us consider the compression of an eccentric ring
acted upon by two equal forces applied along a diameter of the outer
circumference of the ring, Fig. 2.

H 0.39

Fig. 2. Fig. 3.

The ring is bounded by the curves a, = 1.0 and a, = 2.0; the radius of
the outer circle is ry = 0.8509; the radius of the inner circle is ry, =
0.2757; the eccentricity is e 0.2757. The coordinates of a point of
application of the force are a = 1 and 8 =1 2.2758. Here, obviously,

SX= 3Y= M= 0 and the periphery of the ring is free of stresses. For
each force R= 1 and T = 0. The first five terms of the series given by
(6) and (7) are used in computations, The following values of coefficients
(v = 0.3) are obtained from formulas given by (11) and (12):

Ay = — 008157, A% =0.42017, A% = —0.09448, A =+40.01347, A4;° = — 0.00054
B¢ = + 0.08085, B, = —0.48890, B,®= 4 0.05235, B = —0.00485,

B¢ = -+ 0.00014, C=—1.99559, J = —0.16170

The stresses are computed by formulas (5) for each of the two forces
separately and added to stresses computed by formulas (8). Figs. 2 and 3
show diagrams of stresses 0p along the diameter on the x-axis and along
the periphery of the ring.

A half-plane with a round hole may be considered as a special case of
an eccentric ring, when the radius of the outer circle is egual to in-
finity. Thus, all formulas derived in this article may be applied to a
problem where a concentrated force is acting on a half-plane with a
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circular opening; it is only necessary to put a = 0 for the straight-line
boundary. It is alsoc necessary to consider forces which must act as
reactions to a given loading at an infinitely distant point (a = 0, B =

B I
T m) on the plane,

Fig. 4.

Fig. 4 shows a diagram of stresses, op along the periphery of a
circular opening and stresses %, along the diameter on the x-axis, when
a force is applied at a point along the circumference of the opening in
an elastic half-plane. The radius of the opening is r = 0.8509, the dis-
tance from the boundary line of the half-plane to the center of the
opening is 4 = 1.3130, The force having components R= -1 and T = 0 is
applied at a point having coordinates a = 1.0 and B =1 7. The reaction

is a force, R=+1 and T= 0, acting at a point having coordinates
a=0.0and B=1%n,
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